国内精品国产三级国产a久久,亚洲区一区二区,日韩特级毛片,亚洲国产精品www

歡迎訪問拔筆兔范文大全網(wǎng)!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)

天下 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

數(shù)學(xué)水平考是高中數(shù)學(xué)的一個(gè)重要組成部分。在考試之前,高中生需要做好數(shù)學(xué)知識(shí)點(diǎn)的復(fù)習(xí)。下面就是小編給大家?guī)淼母咧袛?shù)學(xué)水平考知識(shí)點(diǎn)總結(jié),希望能幫助到大家!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)1

1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

向量公式:

1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|

2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方)

5.空間向量:同上推論(提示:向量a={x,y,z})

6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)2

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運(yùn)算律:

交換律:a+b=b+a;

結(jié)合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

AB-AC=CB.即“共同起點(diǎn),指向被減”

a=(x,y)b=(x',y')則a-b=(x-x',y-y').

4、數(shù)乘向量

實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當(dāng)λ>0時(shí),λa與a同方向;

當(dāng)λ<0時(shí),λa與a反方向;

當(dāng)λ=0時(shí),λa=0,方向任意。

當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

注:按定義知,如果λa=0,那么λ=0或a=0。

實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來的∣λ∣倍;

當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數(shù)與向量的乘法滿足下面的運(yùn)算律

結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

數(shù)乘向量的消去律:①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

3、向量的的數(shù)量積

定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

向量的數(shù)量積的運(yùn)算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數(shù)量積的性質(zhì)

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)3

1.一些基本概念:

(1)向量:既有大小,又有方向的量.

(2)數(shù)量:只有大小,沒有方向的量.

(3)有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.

(4)零向量:長(zhǎng)度為0的向量.

(5)單位向量:長(zhǎng)度等于1個(gè)單位的向量.

(6)平行向量(共線向量):方向相同或相反的非零向量.

※零向量與任一向量平行.

(7)相等向量:長(zhǎng)度相等且方向相同的向量.

2.向量加法運(yùn)算:

⑴三角形法則的特點(diǎn):首尾相連.

⑵平行四邊形法則的特點(diǎn):共起點(diǎn)

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)4

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={2-1=0}B={-1,1}“元素相同”

結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個(gè)集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時(shí)BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)5

映射的概念

1.了解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類,分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多

2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對(duì)應(yīng),簡(jiǎn)稱“對(duì)一”的對(duì)應(yīng)。包括:一對(duì)一多對(duì)一

函數(shù)的概念

1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

2.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。

3.區(qū)間的概念:設(shè)a,bR,且a

①(a,b)={xa

⑤(a,+∞)={_>a}⑥[a,+∞)={_≥a}⑦(-∞,b)={_

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)相關(guān)文章:

1.高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享

2.高中數(shù)學(xué)高考知識(shí)點(diǎn)歸納

3.精選高一數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)三篇

4.人教版高一數(shù)學(xué)必考知識(shí)點(diǎn)歸納

5.高二數(shù)學(xué)必考知識(shí)點(diǎn)精選5篇總結(jié)

6.高一數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)三篇

7.高中生物學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)分享

8.高二生物學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)

9.高中高考數(shù)學(xué)知識(shí)點(diǎn)最新精選總結(jié)

10.高考數(shù)學(xué)知識(shí)點(diǎn)大全

電商運(yùn)營(yíng) 周易 易經(jīng) 代理招生 二手車 網(wǎng)絡(luò)營(yíng)銷 旅游攻略 非物質(zhì)文化遺產(chǎn) 查字典 精雕圖 戲曲下載 抖音代運(yùn)營(yíng) 易學(xué)網(wǎng) 互聯(lián)網(wǎng)資訊 成語(yǔ) 詩(shī)詞 工商注冊(cè) 抖音帶貨 云南旅游網(wǎng) 網(wǎng)絡(luò)游戲 代理記賬 短視頻運(yùn)營(yíng) 在線題庫(kù) 國(guó)學(xué)網(wǎng) 抖音運(yùn)營(yíng) 雕龍客 雕塑 奇石 散文 常用文書 河北生活網(wǎng) 好書推薦 游戲攻略 心理測(cè)試 石家莊人才網(wǎng) 考研真題 漢語(yǔ)知識(shí) 心理咨詢 手游安卓版下載 興趣愛好 網(wǎng)絡(luò)知識(shí) 十大品牌排行榜 商標(biāo)交易 單機(jī)游戲下載 短視頻代運(yùn)營(yíng) 寶寶起名 范文網(wǎng) 電商設(shè)計(jì) 免費(fèi)發(fā)布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 經(jīng)典范文 優(yōu)質(zhì)范文 工作總結(jié) 二手車估價(jià) 實(shí)用范文 石家莊點(diǎn)痣 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 鋼琴入門指法教程 詞典 讀后感 玄機(jī)派 企業(yè)服務(wù) 法律咨詢 chatGPT國(guó)內(nèi)版 chatGPT官網(wǎng) 勵(lì)志名言 文玩 語(yǔ)料庫(kù) 游戲推薦 男士發(fā)型 高考作文 PS修圖 兒童文學(xué) 工作計(jì)劃 舟舟培訓(xùn) IT教程 手機(jī)游戲推薦排行榜 暖通,電地暖, 女性健康 苗木供應(yīng) ps素材庫(kù) 短視頻培訓(xùn) 優(yōu)秀個(gè)人博客 包裝網(wǎng) 創(chuàng)業(yè)賺錢 養(yǎng)生 民間借貸律師 綠色軟件 安卓手機(jī)游戲 手機(jī)軟件下載 手機(jī)游戲下載 單機(jī)游戲大全 石家莊論壇 網(wǎng)賺 職業(yè)培訓(xùn) 資格考試 成語(yǔ)大全 英語(yǔ)培訓(xùn) 藝術(shù)培訓(xùn) 少兒培訓(xùn) 苗木網(wǎng) 雕塑網(wǎng) 好玩的手機(jī)游戲推薦 漢語(yǔ)詞典 中國(guó)機(jī)械網(wǎng) 美文欣賞 紅樓夢(mèng) 道德經(jīng) 標(biāo)準(zhǔn)件 電地暖 鮮花 書包網(wǎng) 英語(yǔ)培訓(xùn)機(jī)構(gòu)
1419
領(lǐng)取福利

微信掃碼領(lǐng)取福利

微信掃碼分享

主站蜘蛛池模板: 科技| 廊坊市| 苍梧县| 旬阳县| 通辽市| 玛纳斯县| 长海县| 忻城县| 邮箱| 锡林浩特市| 吐鲁番市| 红桥区| 新宁县| 资溪县| 长沙市| 巴彦淖尔市| 游戏| 田东县| 益阳市| 雅江县| 大连市| 双桥区| 七台河市| 望城县| 盐亭县| 兰坪| 驻马店市| 长武县| 滦平县| 阿鲁科尔沁旗| 海宁市| 吉安县| 乳山市| 沙坪坝区| 浮梁县| 磐安县| 山西省| 盐池县| 象州县| 普定县| 察哈|